Different Behaviour of *cis*- and *trans*-Amine-dichloro- $(\pi$ -ethene)platinum(II) Complexes in Their Reaction with the Free Amine

By Giovanni Natile

(Istituto di Chimica Generale ed Inorganica, Università di Venezia, Venezia, Italy)

Summary The complexes cis-[Pt(π -C₂H₄)Cl₂(L)] (L = 3,5-dimethylpyridine or H₂NCHMePh) react in solution with two molecules of free L, undergoing substitution of the chlorine *trans* to ethene and nucleophilic attack on the π -bonded olefin to form cis-[Pt{ σ -C₂H₄(L)}Cl(L)₂]Cl species.

A RECENT communication¹ dealt with the nucleophilic attack of excess of pyridine on *cis*-dichloro-(π -ethene)-(pyridine)platinum(II) which gave the σ -adduct *cis*dichloro(pyridine)(2-pyridinioethanide)platinum(II) and pointed out that: (i) the attack takes place much more readily on the *cis*- rather than on the *trans*-isomer; (ii) the *cis*-pyridine stabilizes the σ -adduct in a similar manner as much stronger π -acceptors as phosphines and sulphoxides; and (iii) the strongly σ -donating ethanide group and the π -acceptor pyridine prefer the *cis*- to the *trans*-configuration. This prompted us to publish our evidence for a different formulation of these complexes.

In previous work² we investigated the reaction of a series of *trans*-[Pt(π -C₂H₄)Cl₂(py)] complexes with stoicheiometric amounts of free base (equation 1). Performing the same

$$\begin{array}{c} Cl & Cl & Cl \\ H_2 & H_2 \\ H_2 & H_2 \\ Cl & Cl \\ CH_2 & H_2 \\ Cl & Cl \\ \end{array} + L \longrightarrow \begin{array}{c} L \longrightarrow \begin{array}{c} L + L \longrightarrow \begin{array}{c} L \longrightarrow \begin{array}{c} L + L \longrightarrow \begin{array}{c} L \longrightarrow \end{array}{c} L \longrightarrow \begin{array}{c} L \longrightarrow \begin{array}{c} L \longrightarrow \begin{array}{c} L \longrightarrow \begin{array}{c} L \longrightarrow \end{array}{c} L \longrightarrow \begin{array}{c} L \longrightarrow \begin{array}{$$

reaction on the *cis*-isomer we observed that complete dissolution of the starting material (which is sparingly soluble either in methanol or in chloroform) occurred after 2 mol of free base had been added per mol of platinum complex indicating that the soluble species contained two extra molecules of amine (equation 2). Using either a higher (4:1)or a lower (1:1) amine: platinum ratio (in the latter case not all the *cis*-complex dissolved) the same complexed species was formed in solution. We have now investigated the complexes (I)—(IV) (Table).

Complex (I) showed in its n.m.r. spectrum three sets of pyridine signals; two of these had methyl resonances very similar to those observed in *trans*-[Pt{ σ -C₂H₄(3,5-Me₂py)}-Cl₂(3,5-Me₂py)], the third set, having chemical shifts intermediate between the other two, was assigned to the pyridine *cis* to the σ -bonded ethene. The absorptions of the σ -ethene protons were analogous to those reported;¹ under our conditions too there was no trace of the absorption at δ 4.45 of the π -C₂H₄ protons of the starting complex indicating that the reaction goes to completion also in the absence of excess of pyridine.

Similar behaviour was shown by the already reported cis-[Pt(π -C₂H₄)Cl₂(H₂NCHMePh)] complex.³ The assignment of the σ -ethene proton resonances in this case was difficult as the NH, and N-CH resonances overlapped.

Reaction of the *cis* π -ethene complex containing L¹ with free L² gave the mixed complex having L¹ in its original *cis* position with respect to the σ -ethene; no isomerization was detected before decomposition occurred, indicating that the three different amine molecules of the σ -adduct do not exchange their sites.

Compounds (I)—(IV) (see Table) could be isolated easily in the solid state using the same procedure described earlier for the preparation of the σ -adducts starting from the *trans* complexes. The products, which in the present case are very soluble in methanol, could be precipitated in >70% yield as white solids by adding diethyl ether; in all cases they gave satisfactory elemental analyses.

The substitution of the chlorine *trans* to ethene could, in principle, either precede or follow the nucleophilic attack by the amine on the π -olefin; in the first case (which is the more probable) a cationic π -ethene complex, very sensitive to attack by a nucleophile, would be formed.

TABLE. Proton chemical shifts^a (δ), downfield from SiMe₄, of L protons in cis-[Pt { σ -C₂H₄(L¹)}ClL²L³]⁺. The numbering of ligands $(L^1, L^2, and L^3)$ is as in equation (2).

	L^1				L^2		Γ_3		
Complex	Me	<i>o-</i> H	<i>р</i> -Н	Me	<i>o-</i> H	<i>p</i> -H	Me	o-H	<i>p</i> -H
$cis - [Pt \{\sigma - C_2 H_4(3, 5 - Me_2 py)\} Cl(3, 5 - Me_2 py)_2]^+$ (I)	2.57	9.04	7.97	2.27	8.20	7.4b	$2 \cdot 40$	8.53	7·4b
$cis-[Pt\{\sigma-C_2H_4(3,5-Me_2py)\}Cl(3,5-Me_2py)(H_2NCHMePh)]+(II)$	2.53	9·1 0	7.88	$2 \cdot 21$	8.04	7∙4 ^b	1.73		
cis -[Pt { σ -C ₂ H ₄ (H ₂ NCHMePh) }Cl(H ₂ NCHMePh)(3,5-Me ₂ py)]+ (III)	1.80			1.50			$2 \cdot 23$	8.21	С
$cis-[Pt \{\sigma-C_2H_4(H_2NCHMePh)\}Cl(H_2NCHMePh)_2]^+$ (IV)	1.6p			1·45 ^b			1·6b		

^a All spectra were recorded in CDCl₃ solution at 0 °C. ^b Because of overlap the values are inaccurate. ^c Obscured by phenyl resonances.

The complexes $cis-[Pt\{\sigma C_2H_4(L)\}Cl(L)_2]^+$ do not have a formal charge on the platinum atom whereas there is a formal negative charge on platinum in *trans*-[Pt { σ -C₂H₄(L) }Cl₂(L)]; this could well explain the different stability of the cis compared with the trans- σ -adducts.

Decomposition studies in solution have also shown that stability increases going from (I) to (IV); this resembles the

- I. M. Al-Najjar and M. Green, J.C.S. Chem. Comm., 1977, 926.
 ² G. Natile, L. Maresca, and L. Cattalini, J.C.S. Dalton, 1977, 651.
 ³ A. Panunzi and G. Paiaro, J. Amer. Chem. Soc., 1966, 88, 4843; A. Panunzi, A. De Renzi, and G. Paiaro, *ibid.*, 1970, 92, 3488.
 ⁴ D. Hollings, M. Green, and D. V. Claridge, J. Organometallic Chem., 1973, 54, 399.

trend observed in trans- $[Pt \{\sigma - C_2H_4(L)\}Cl_2(L)]$ complexes (where the stability parallels the increasing basicity and decreasing steric hindrance of the amine).4

(Received, 5th May 1978; Com. 477.)